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ABSTRACT

The Department of Defense (DOD) possesses tremendous amounts of data
stored in many large databases. Given the size of these databases, large scale data
analysis tools are required to find previously unknown and interesting patterns. Data
Mining tools which produce output in the form of production rules, i.e., “If x, Then
y” are preferred because the generated rules are understandable by humans and

readily support decision making processes.

This thesis investigates the problems associated with the statistical testing of
rule generated from data mining systems. Statistical testing of rules generated by data
mining systems is required to ensure that the generated rules are based on valid
statistical relationships and are not the result of random variation in the underlying
data. A strategy for the testing of rules using a non-parametric test known as the
randomization test is implemented for the testing of rules from a prototype data

mining system.
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I. INTRODUCTION
A. BACKGROUND

Private and vaemment organizations commonly collect information pertaining to
the operation of the organization. The amount of information collected has increased in
recent years due to automation and of many routine business practices and the decreasing
cost of storage media for holding the information. Banks, retailers, scientific and engineering
research organizations, and government agencies all maintain large databases of information

collected in their daily operations.

Clearly the means available to store information has increased. Organizations may
collect gigabytes of information daily and have databases on an organizational scale in the
terabyte range. However, many experts perceive that there is a gap between data generation
and data understanding. [1] This growing gap between the large amount of data being stored
and the ability to analyze and make use of this data has created interest in large scale data
analysis tools. These tools are designed to search the organizations’ databases for new and
interesting patterns which were previously unknown and will be of future benefit to the
organization. Applications for this technology exist in marketing, scientific research, and for
development of expert systems. “Data Mining” tools are now becoming available to assist

in large scale data analysis.

Data mining tools typically represent patterns in the database in the form of
production rules, i.e., If X, then y. The rules produced by the data mining tool also must have
a measure of certainty associated with the pattern which corresponds to the number of
incorrect classifications in proportion to the number of correct classifications. Statistical
hypothesis testing is customarily employed to test the validity of these rules to ensure that
the induced rule is based on statistically valid relationship and is not the result of random

variation in the underlying data.




B. RESEARCH OBJECTIVE

The primary dbjective of this thesis is examine the issues and problems associated
with statistical hypothesis testing of rules induced by data mining tools. The problems of
statistical hypothesis testing of rules induced by data mining tools by conventional testing
methods are revealed and an implementation of an alternative strategy based on a non-
parametric testing method known as randomization testing is implemented. Randomization
testing methods are used to test the statistical significance of a set of rules produced by the
Naval Postgraduate School Genetic Program (NPSGP) which is a prototype data mining
system. The set of rules produced from NPSGP are tested to see if the rules produced from
NPSGP are, in fact, better than those which would be expected to develop as a result of

random variations in the underlying data.
C. ORGANIZATION OF THE STUDY

Chapter I provides the general introduction to the subject. Chapter II provides
background on the process of data mining and principles behind the genetic programming
methods utilized in NPSGP. Chapter Il provides information associated with statistical
testing of rules induced by data mining tools and presents the theory underlying
randomization testing. Chapter IV provides information on the data and methodology used
in the study and Chapter V provides results of the statistical testing. Chapter VI contains

conclusions and recommendations of the thesis.




II. BACKGROUND
A. PRINCIPLES OF KNOWLEDGE DISCOVERY
1. Deductive Inference versus Inductive Inference

Deductive inference and inductive inference are logical thought processes used by
humans to learn facts, theories, and principles. Although their goal is the same, to learn

about the world around us, they differ in the manner in which conclusions are arrived at.

a. Deductive Inference

Deductive inference is the development of some theory or axiom which would
then be proven or disproved by supporting or contradicting facts. For example, a theory such
as ‘February is the coldest month of the year’ would be proven or disproved according to the
empirical evidence available. Deductive inference in the most basic form contains the
following steps:

1. Development of some preliminary hypothesis or theory
2. Collection of observational statements of facts

3. Judgement on quality of a hypothesis based on collected facts and initial premises

b. Inductive Inference

Inductive inference is the development of some premise or theory based on
existing knowledge. Given a database of previous year’s monthly temperature readings, a
researcher would then reach his or her own conclusion which month is the coldest of the

year. Inductive inference thus attempts to develop a theory or model of the real world based




on available evidence to support the theory.
Inductive inference in its most basic form contains the following steps:
1. Collect observational statements of facts

2. Develop theory or model based on known facts

2. Inductive Learning

Learning is defined as “... changes in the system that are adaptive in the sense that
they enable the system to do some task or tasks drawn from the same population more
efficiently and more effectively the next time. [2] Learning is desirable because we seek
improved ways to coexist with our environment to improve our welfare. Inductive learning

is the application of inductive inferences to the process of learning.

Two major types of inductive learning are learning from examples (concept
acquisition) and learning from observation (descriptive generalization). [3] Learning from
examples involves placing objects into logical conceptual categories such as weather =
sunny, weather = cloudy, and determining on the basis of observation the logical category
which best fits the observation. Descriptive generalization is the grouping of a set of
observations into a descriptive group based on some common characteristics. For example,
based on the height measurements of a college basketball team, we might reach the

conclusion that most basketball players are tall.




3. Machine Learning and Machine Discovery
a. Machine Learning

Machine learning is a sub-field of artificial intelligence dealing with the
computer supported derivation of domain models which are based on knowledge
representation paradigms of artificial intelligence. [4] Machine learning attempts to
automate the learning process to discover new facts, concepts, and theories given a particular
domain or area of interest. The machine learning technique is usually based on a

representative human learning paradigm such as inductive inference.
b. Machine Discovery

Machine discovery is a sub-field of machine learning. It is a specialization
of machine learning in that it is specifically concerned with the discovery of previously
unknown information from the provided data or information which of value to the user. A
common machine discovery learning paradigm is concept acquisition (learning by example).
In this paradigm, given a set of facts F, and a predetermined set of classes S, the discovery
method attempts to associate some subset of facts f o F with a given class s 2 S. This is also
referred to as learning by supervision, in that user supervision is required to identify the

relevant classes of interest.




4. Knowledge Discovery in Databases
a. Basic Concepts of Knowledge Discovery in Databases

Knowledge discovery in databases (KDD) is the application of machine
discovery methods to information which is stored in databases. Knowledge discovery is
defined as “the nontrivial extraction of implicit, previously unknown, and potentially useful
information from data.”[1] KDD thus involves finding implicit patterns in the data which
otherwise may go unnoticed. KDD discovery methods make use of the inductive inference
process by associating sets of facts in the database with particular class outcomes; the
discovered association is termed a pattern. Given the general nature of the process, KDD can
be accomplished through a variety of discovery methods. Piatetsky-Shapiro, et al [1] cite

four main characteristics displayed by knowledge discovery in databases.

1. High Level Language. Discovered Knowledge is represented in a high level
language. It need not be directly used by humans, but its expression should be
understandable by humans.

2. Accuracy. Discoveries accurately portray the contents of the database. The extent
to which this portrayal is imperfect is expressed by measure of certainty. The
patterns induced by the discovery methods will very seldom be exact due to values
entered in error, missing information, and normal variation in the data.

3. Interesting Results. Discovered knowledge is interesting according to user-
defined biases. In particular, being interesting implies that the patterns are novel and
potentially useful. Knowledge is useful when it can help achieve a goal of the system
or the user. The biases or preferences of the user may preclude some patterns with
high certainty from being considered interesting results.

4. Efficiency. The discovery process is efficient. Running times for large sized
databases are predictable and acceptable.




b. Database Issues

A database is a collection of related files. The most basic database model is
based is on the aggregation of records associated with a particular transaction or event. Each
record is referred to as a tuple. A data dictionary provides the definition of each field within
a tuple and allowable values for an individual field. The database management system
provides a means of storage, update, and retrieval of information for a particular event or

group of events.

Database users typically have some domain knowledge learned through
personal experience and consultation with the data dictionary. The user can utilize this
learned knowledge to focus the search for patterns of interest. The use of this domain
knowledge to focus the search for patterns of interest is controversial. [1] It is controversial
because the use of the domain knowledge will focus the search in a particular direction and
possibly reduce chances for the discovery of new and useful patterns. For instance,
Structured Query Language (SQL) is an efficient means for data retrieval to support theories
in the deductive inference process. It is not primarily designed to discover previously
unknown information Unsupervised searches will improve chances of discovery of new

patterns, albeit at a computational penalty.

Databases are typically designed to facilitate records keeping of information
for an organization; application of KDD methods may come as an afterthought. As such,
databases may contain irrelevant attributes and/or attributes entered in error.  This is
referred to as ‘noise’ in the data and is analogous to noise received in communications
signals in that it may cause erroneous results. Missing values also may occur and affect

outcomes of the KDD process.




Databases may bnly contain only sparse information with which patterns can
be inferred. This sparse information may not be enough to provide a description sufficient

to induce a reliable model.
B. KNOWLEDGE DISCOVERY METHODS

This section provides an overview of Genetic Algorithms and Genetic Programming

that are basis of the knowledge discovery methods studied in the research.

1. Genetic Algorithms

a. History

Genetic algorithms are search algorithms which use the mechanics of natural
selection and reproduction as their controlling mechanism. Genetic algorithms were
developed by Holland (1975). They draw their logical basis from similarities to adaptive
models in the biological world. Genetic algorithms are based on the darwinian principle of
survival of the fittest in that only the most fit individuals in a species will be successful in
finding food, water, and shelter to enable them to survive and reproduce. This analogy is
used in grading a series of potential solutions to maximize or minimize an objective function

corresponding to a solution to a problem of interest.
b. Theory of Genetic Algorithms

Goldberg [5] asserts that genetic algorithms (GA’s) differ from other search

techniques in four fundamental ways:

1. GA’s work with a coding of the parameter set, not the parameters themselves.




2. GA’s search from a number of points, not a single point.

3. GA’s use payoff (objective function) information, not derivatives or other
auxiliary information.

4. GA’s use probabilistic transition rules, not deterministic rules.

_ A typical GA is represented as a string of binary digits. The objective
function for the radius of a quarter arc of a circle x* + y* = r* over the interval 0<x<4 could
be represented by a four bit binary string such as [1011]. The bits of the string represent the
measurement of the radius plus a constant one added to the value of the string. Thus, the
string [1011] represents the value of a radius squared (r*) with measurement of 12. Figure

2-1 is a graph of problem domain.

Figure 2-1.
The most highly fit string would represent the closest to optimization of the function in the
problem domain. For this problem, the binary string with a value of sixteen [1111] (string
value of 15 plus a constant 1) would represent the optimal value. Each string is graded
according to a fitness function which measures the ability of the string to solve the problem

at hand. A number of different strings, which is commonly referred to as the population, is




used to conduct the search in a parallel manner. A fitness rating is developed for each string
in the population, and the fitness of the population as a whole is computed. Selection of the
next generation of strings occurs according to a probabilistic function based on the fitness

of the strings. Highly fit strings have a better chance for selection and resulting survival than

strings with comparatively lower fitness.
¢. Reproduction, Crossover, and Mutation in Genetic Algorithms

Genetic algorithms typically use three operators which are Reproduction,
Crossover, and Mutation.[5] Reproduction is simply selection of the most fit strings. A
common method for implementation is the use of random selection in the form of a lottery
with the more highly fit strings receiving more tickets or chances to be selected. In the
previous example, assume a population of four strings. Table 2-1 shows each string with its
fitness computed; the probability for selection for reproduction is based upon a particular
string’s fitness as a percentage of the total fitness of the population. The fitness of each
string is simply interpreted as its decimal value, e.g., [0011] is equal to three, with no strings

exceeding a value of sixteen in the problem domain.

String # String Value of Fitness % of Total

S, [1011] 11 39%

S [0011] 3 11%

S, [1000] 8 29%

S, [0110] 6 21%

Total : 28 100%
Table 2-1

10




A possible result of the reproduction selection process is displayed in Table 2-2 , where

string S, has been selected twice and strings S, and S, have been selected once.

String # String Value of Fitness
Si (1011] 11
S, [1011] 11
S, [1000] 8
S, [0110] 6
Total . 36
Table 2-2

Reproduction alone improves the number of highly fit strings in a population;
it may not provide for optimization of the desired function in that it does not provide any

improvement to existing strings in the population.

Crossover is the genetic mating of two strings in an attempt to create a more
highly fit string from the genetic material of their ancestors. Crossover occurs by the random
selection of a crossover position k where k is a position between 1 and /- 1; [is the length
of the string and 1 is the first position of the string. The subsequent exchange of bits

between two strings takes place at positions k +1 and 1 inclusively.

11




For population tWo, crossover was randomly selected to occur at position k=1.
Strings S, and S, were randomly chosen for mating with the results displayed as Table 2-3.
Crossover between string S, [1011] and S, [0110] at position k=1 results in the swapping
of bits between S, and S, at the second leftmost position in the strings; the new value of S,

is now [1110] with a value of [0011] for S,.

String # String Value of Fitness
S, [1110] 15
S, [1110] 15
S, [1000] 8
S, [0011] 3
Total 41
Table 2-3

Reproduction and crossover have resulted in an increase in the fitness of the
population and the result of a more highly fit string than previously encountered in the prior
population. Genetic Algorithms improve searches by (1) reproducing high quality notions
according to their performance and (2) crossing these notions with many other high
performance notions from other strings [5]. A specified number of generations of evolution

for the GA process are selected by the user.
Mutation is a random operation involving the alteration of a single bit or bits

in the binary string. Mutation provides a means of change for a string or strings when all the

strings in the population are converging to a local (but not global) maximum.

12




Both the string position and population elements selected for mutation are random. The
implementation of the mutation operation may or may not improve the performance of the
string. Empirical genetic algorithm studies suggest that one mutation per thousand bit
(position) transfers may produce good results. Mutation rates are similarly small (or
smaller) in natural populations leading many researchers to conclude that mutation may be

considered as a secondary mechanism of genetic algorithm adaption. [5]
2. Genetic Programming

Genetic Programming (GP) is a logical extension of Genetic Algorithms
developed by Koza. [6] In contrast to the fixed length strings used by Genetic Algorithms,
GP uses actual program statements, in the form of parse trees, to evolve a program which

would provide a working solution to some problem of interest.
a. Genetic Program Constructions

Koza uses a type of expression in the implementation of GP known as a
symbolic expression or S-expression. The S-expression is an integral part of the LISP
programming language. A LISP expression, such as, “a * (b+c)” is equivalent to a parse
tree for a section of a program. Such as a statement would appear in parse tree format as

depicted in Figure 2-2.

The unique capability of the LISP S-expression to serve as both data and as
an executable program statement was one of the key reasons LISP was chosen for
implementation of GP. [6] However, it is also possible to write genetic programs with

standard procedural languages such as C and Ada.

13




Figure 2-2.

The LISP S-expressions used in GP fall into two major categories which are
known as the function and terminal set. The function set consists of domain specific
functions which the user selects as appropriate for solving the problem. Examples would be
boolean, arithmetic, and other mathematical operators such as exponential functions. The
terminal set consists of arguments to the function set during the evolution of the genetic

program. The terminal set usually consists of relevant variables from the problem domain.

An important feature which genetic programs must incorporate is the closure
property. This property prevents the evolved genetic program from taking on illegal
arguments which would result in the execution of a program statement ending in an error.
A classic example of this is a program which attempts division by zero. The closure property
requires definition in the function set of a special division operator to prevent this situation

from occurring.

14




b. Operation of a Genetic Program

Genetic programs use the genetic algorithm concepts of reproduction,
crossover, and mutatibn. The initial population consists of a series of randomly generated
programs. As in genetic algorithms, evolution of a number of populations of programs
occurs. The crossover operation involves the swapping of S-expressions between programs

in order to evolve a more fit single program.
c. Application of Genetic Programming to KDD

Genetic programming methods can be applied to a wide variety of machine
discovery problems, including knowledge discovery in databases. The fitness function used
by the GP program to implement KDD would be one designed to favor evolution of
programs which can locate patterns in the database. The data mining software used in this
study which is known as the Naval Postgraduate School Genetic Program is an example of

such a system.
C. REPRESENTATION OF DISCOVERED KNOWLEDGE

Discovered knowledge in the KDD process may be represented in the form of rules.
Rules represent knowledge in a form humans can readily understand and use. A rule
language serves two general purposes. The first is to express discovered knowledge found
by the discovery method. The second purpose is to serve as a prediction language. [7]
Extensions of rules with basic probability concepts allow prediction of outcomes when
previously unseen test data is encountered. The predictions are based on previous outcomes

which served as the basis for rule generation.

15




1. Representation by Rules
a. Production Rules

Rules induced from databases have been traditionally placed in the form of
production rules which are understandable and usable by humans. A production rule is
interpreted as a condition-action pair with the context If condition A, Then action B. Given
a set of multi-valued attributes {a,, a,, ...a, } and a series of distinct classes ¢, , an

elementary description takes the form If a, Na, A .. \a,,thenc, wherea,, a, ... take

on some attribute value condition and c, is a class outcome.

Rules can also take on disjunctive conditions such as If
a, N\ a, V (a; A\ a,), then C,. Rules are typically expressed with some degree of certainty
expressed by a probability p(x). Rules induced from real world databases are rarely exact

due to noise from erroneous values and normal variation in the data.

From Carbonell [3], the four basic operations whereby production rules may

be acquired and modified are :

1. Creation. A new rule is created by the system or acquired from an external entity.

2. Generalization. Conditions are dropped or made less restrictive, so that the rule
applies in a larger number of instances.

3. Specialization. Additional conditions are added to the condition set, or existing
conditions are made less restrictive so that the rule applies to a smaller number of
specific conditions.

4. Composition. Two or more rules that were applied together in sequence are made
into a single larger rule, thus forming a “complied” process and eliminating any
redundant conditions or actions.

16




b. Decision Trees

Rules induced by the discovery method can also be portrayed in the form of
Decision trees. A tree-like structure is produced with attributes represented as nodes from
which further branching can occur. Individual classes are represented as leaves of the tree

and may be further described using class probabilities or actual class counts.

2. Rule Utility

Given a set of patterns (rules) induced from a database, some rules will be more
useful than others to the user. This is the notion of rule utility. The utility, which is
generally defined as usefulness of the rule to the user, is a subjective concept and will vary
among users for a particular rule. The utility of the rule applies to the application of the rule
in the context of the set of possible actions. A rule with high utility will enable an action to
be taken which results in a gain or the avoidance of a loss. In the section, we discuss rule

interestingness, a measure of rule utility.
a. Rule Interestingness

Given a set of induced rules, some rules will be superior to other rules in
terms of simplicity, coverage, and accuracy of the rules. Rule Interest (RI) measures provide
a means for grading of rules in accordance with some predefined criteria. The rule interest
measure is typically a statistics or information theory concept. Rl measures are useful for
comparing the output of different rule induction algorithms, and they can be applied also to
the ranking of rules previously identified as rules having some utility to the user. Rules with
low coverage and certainty will not be of much use to the user and therefore tend to be of low

interest.

17




b. General Measures of Rule Interestingness

The most basic rule interest measure used is referred to as the Certainty
measure. The certaihty measure is simply the number of correct classifications of the rule
divided by the number of examples in the database. Piatetsky-Shapiro [8] suggests that all
rule interest measures should satisfy several basic principles. Rules satisfying these proposed
principles should assign high values to strong rules and lower values to weak rules. His

proposed measure of rule interest is described as follows:

Let N indicate the number of tuples in a database of interest. Let IAl be the
number of tuples satisfying condition A and let [Bl be the number of tuples satisfying
condition B, and let IA&B! be the number of tuples with the condition A~ B. The proposed

rule interest measures are:

Al |BI

1. IA&BI = N if A and B are statistically independent, the rule is not of interest.
2. RI - (monotonically increases with) |A&B| when other parameters remain the same.
3. RI~ (monotonically decreases with) IA&BI when other parameters remain the same.

Piatetsky -Shapiro suggests the simplest function which meets these three criteria is
Al IBI
A&B| - —— -
|A&B| - — 2-1)
This is the difference between the number of tuples containing IA&BI and the number of

tuples of IAl and IBl which would be expected if A were independent of B.

Intuitively, RI depends on the coverage of the rule, i.., what proportion of the database does

18




the rule classify and the certainty of the relationship, i.e., what is the correlation of a

particular set of attributes A with the predicted class B.

¢. An Information Theoretic Approach to Rule Interestingness

Goodman and Smyth [9] suggest an information theoretic approach to
evaluating rule interest. Given a rule, with some set of attributes X and a set of object classes
Y, in the form if (X=x), then (Y=y) with some probability p(a), then some information is

provided by Y=y about X. This information is used in part for the evaluation of rule interest.

Goodman and Smyth propose a rule interest measure known as the J-
measure. [9] J-measure incorporates the simplicity of the hypothesis and the goodness of
fit of the class to the attributes to come up with a measure of rule interest. It satisfies the
concept of average mutual induction between discrete random variables as originally defined

by Shannon. The J measure formula is defined as follows:

(1-p(xy))

(1-p®) ) 2-2)

JXY=y) = pGy) pedy) log 2 4 (1= pialy)) Tog
p(x)

The J measure can be broken into two fundamental parts. The first part p(y) expresses the
coverage of the class y in the database. The remainder of the J-measure is known in
information theory as the cross-entropy of X on the condition that Y=y. Cross-entropy is a
distance measurement between the a posteriori belief about X and the a priori belief
concerning given a particular outcome of Y=y. The log base of the cross entropy gives less
weight to rare events (circumstances where p(x) is low) as compared with Piatetsky-Shapiro's
Rule Interest measure. J measure thus has a preference for events which occur frequently in

the database and also have a strong correlation between X and Y. J measure can be used to
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rank rules by information content which appear to be redundant with respect to the same

outcomes with the lower ranking rules being eliminated.

Goodfnan and Smyth explicitly comment that "To a large extent, ..
information based and correlation based measures, in practice, often rank rules in a similar
order." [12] This is not a surprising result since the concept of mutual self-information is
based on the conditional probabilities between series of events in a system albeit used in an
informational (log based) manner. [13] Specifically, the mutual information I E; , K )

between the two events E; and F, is defined by:

(E,NF) - log Py
P(E) P(F) P

I( Ej, F, ) =log P (2-3)

The mutual information in a system would involve a summation of the mutual information

for all values of E; and F,.

3. Strategies for Refinement of Rules

- The discovery method used to extract patterns from a database may discover a large
number of patterns. Many of these patterns may be redundant or so specialized that they are
not immediately useful. The user of the knowledge discovery method would like to choose
the most general and useful patterns for his own use. A coherent strategy must then be
developed for selection of the best patterns with regards to certainty, coverage, and novelty

of the pattern.
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a. Production Rule Refinement

Major and Magano [11] suggest a rule refinement strategy to eliminate rules
with low interestingness. Interestingness is defined according to four criteria of performance,
simplicity, novelty, and significance. Rules which are not interesting according to these

criteria are dropped from the set of rules. The strategy is implemented as follows:

1. Performance. A performance frontier is defined consisting of a Cartesian plane
with axes of < coverage, certainty factor >. If Rulel is at <G, C>, and Rule2 at <F,
B> with G > F and C > B, then Rulel is said to dominate Rule2.

2. Simplicity. The concept of a rule lattice is introduced to provide an order among
different rules. Simpler (more general) rules subsume more specialized rules if they
both cover the same concept. A rule with no further generalization is said to be a
Most General Rule (MGR). Rules which provide specializations of the MGR are
said to be in the family of the MGR.

3. Novelty. In a situation where Rulel and Rule2 have overlapping concepts, one
of the rules will most likely be preferred to the other on the basis of scientific
rationale, uniqueness, or performance. “A rule that adds little insight or performance
to an existing set of rules has no novelty with respect to that set.” [11]

4. Significance. For a rule to be considered interesting, it must vary significantly
from other rules in the rule set. A significance measure was devised to take into
account the complexity of the rule and the statistical significance based on an

approximation of the Chi-Square test. The complexity measure J for a rule for a
more

general concept Q and a rule R for a specialization of Q is:

(1 V!
7 ( G) ((T! (V—-m)) 2-4)
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where I is the number of instances of concept Q, G is the number of instances
covered by concept R, V is the number of variables available to formulate
specializations of concept Q, and T is the number of conjuncts present in R. J is then
the specializations of the more general concept Q examined by the induction
mechanism.

The significance is measured by:

S(RIQ) = - log,, (A J) (2-6)

where A is a numerical approximation to the one tailed significance level of the Chi-
Square test. An arbitrary cut-off of 2.0 was established for the domain researched
by the authors although this could vary based on the needs of the user. The
significance measures favor rules with statistically significant differences and
simplicity in the structure of the rule.

Major and Magano define potentially interesting rules are those that satisfy the

performance criterion or are closely related to rules that do. A rule R is potentially
interesting if :

1. R is on the performance frontier or

2. Q is on the performance frontier and R is in the cone of Q or

3. Q is a most general rule and there are at least three frontier rules in Q’s family, and
R is also in Q’s family

Technically interesting (TI) rules are selected among potentially interesting rules
according to simplicity and statistical significance criteria. A rule Ris technically interesting
if R is potentially interesting, and for all Q that Q is TTand R specializes Q and S(RIQ) >
2.
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Rules which are not Genuinely Interesting are then removed. This involves
examination of the TI rules which to pick the rules Which are most applicable to the concept
of interest. Redundanf rules which do not provide an increase in performance are removed
from the rule set. A domain expert is used to pick the rules which are the most useful and
relevant in a scientific sense. The goal is to reduce the induced number of rules to small
number of rules with high coverage, certainty, and applicability to the concept under

consideration.
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III. TESTING OF INDUCED RULES
A. RELIABILITY OF INDUCED RULES

Machine Discovery methods such as Genetic Programing can be used by managers
to find patterns in data bases in the form of rules. The rules are graded according to rule
interest measures as previously discussed. Before the rules are used for actual decision-
making purposes, testing of the rules must occur to ensure that the induced rules are based
on valid statistical relationships. The use of untested rules would represent a risk by acting
on information which, in fact, may be the result of random variation in the data used to
induce the rule being evaluated. Hence, statistical procedures are a necessity for assessing

the reliability of rules.
1. Statistical Testing

Mathematical Statistics is the field of science which deals with the mathematical
treatment of random océurrences. Mathematical statistics comprises probability theory,
statistics, and their applications. A general application of mathematical statistics is to assess
the accuracy of models which have been inferred from an inductive process. Probability
theory allows for the assessing of the accuracy of a model based on known information. The
testing of models developed inductively by deductive reasoning in the form of statistical
testing is necessary to develop accurate models. This forms the basis of the scientific
method; a model developed inductively is tested with what information is known in regards

to probability of the model. The process is depicted in Figure 3-1.
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Figure 3-1. After Ref. [12]

2. Hypothesis Testing

Hypothesis testing is used to see if two populations agree on some common
parameter. Normally, the hypothesis that two populations agree is termed the null hypothesis
and is denoted by H,. The hypothesis that the populations do not agree is termed the
alternative hypothesis and is denoted by H,. The test has two possible outcomes; F is
accepted, or H, is rejected. Since hypothesis testing is normally conducted with samples
from two different populations, there will likely be differences in the parameter being tested
between the two populations. Rejection of the null hypothesis will occur when results are

received that are of low probability under the null hypothesis.

The problem of what constitutes a low level of probability is covered by the notion

of significance level. Sachs [12] addresses the concept of significance level.
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If a test with a level of significance of, for example, 5% (significance level o = 0.05)
leads to the deduction of a difference, the null hypothesis is rejected and the alternative
hypothesis -the populations differ- is accepted. The difference is said to be important or
statistically significant at the 5% level, i.e., a valid null hypothesis is rejected in 5% of all
cases of differences as large as those observed in the given sample, and such differences are
so rarely produced by random processes alone that: a. we will not be convinced that random
processes alone give rise to the data or, formulated differently, b. it is assumed that the
difference in question is not based solely on a random process but rather on a difference
between populations.

3. Problems with Testing of Rules Induced by Genetic Programming

Genetic Programming heuristically searches for patterns corresponding to high levels
of the specified fitness function. The program searches in parallel from a number of starting
points and each member of the population evolves through crossover with other members
of the population through successive generations. The output of the genetic programming
process is a number of multiple independent models in the form of rules corresponding to
patterns in the data base. Jensen [13] notes that problems occur when testing multiple
models. Testing multiple models increases the probability of finding an apparently accurate

model by chance alone.
a. Labelling Spaces

Jensen illustrated the problem with testing multiple models through the use
of labelling spaces. A labelling is a set of class observations with each observation
corresponding to a label. The labelling space L is an N dimensional space where N is the
number of observations. Any one labelling represents a point in the space of all possible
labellings. The scoring statistic, which is the fitness function in the case of rule induced from
genetic programming, represents the distance d between the actual and predicted labellings.

Thus, a labelling for a rule with a high fitness value would have a smaller distance d than a
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labelling for a rule with a lower fitness value. Significance testing can be viewed as
determining the probability p that an arbitrarily chosen labelling fall within distance d of the
predicted labelling. All such labellings fall within the shaded area depicted in Figure 3-2. The
probability p is equai to the ratio of the number of labellings within the shaded area to the

number of labellings within the entire labelling space L.

Figure 3-2 After Ref. [13]
b. Testing of Multiple Models
The testing of multiple models is problematic in that it increases the chances
of finding an apparently accurate model by chance alone. This concept can also be illustrated

by labelling spaces as depicted in Figure 3-3. The points P/ ... P5 represent individual models

in the labelling space.
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Figure 3-3 After Ref. [13]

When multiple models are tested, significance testing can be viewed as determining the
probability that an arbitrarily chosen label falls within distance d of any of the predicted
labellings. The distance d is the actual distance between the actual Labelling 4 and the best
of the predicted labellings ( P/ ). [13] The distance d is then used as the radius for the shaded

circles in Figure 3-4.

Figure 3-4 After Ref [13]
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More area is clearly in shade in Figure 3-4. This increased area represents the probability

that a particular model will be found to be statistically significant. Jensen comments:

Testing multiple models puts more labellings within reach of at least one of the
models. This increases the probability that an apparently accurate test will be found by
chance alone. [13]

Conventional parametric statistical tests are designed to test one model at a time and assume
that it is the only model tested. For this reason, use of a conventional statistical test could

lead to misleading results when testing rules obtained from genetic programing.

c. Testing of Correlated Models

Jensen also notes that testing of results from induction systems also introduce
an additional difficulty due to the testing of multiple models with highly correlated
predictions. High correlations between models may result from the models being closely
related in form or from the models being induced from the same data set. Correlation
between models decreases the probability of finding an apparently accurate model from
chance alone. [14] [15] Jensen also explains this effect in terms of labelling spaces. Highly
correlated predictions are closely grouped in the vicinity of the actual value A. The most
accurate model has the labelling PI. This is depicted in Figure 3-5. Significance testing
is used to determine the probability that an arbitrarily selected labelling would fall within
distance d of one of the models. The correlated labellings reduce the amount of labellings
within reach of each individual model, thus lessening the possibility that a spurious labelling

may be included in a particular model. This is depicted in Figure 3-6.
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Figure 3-5 After Ref. [13]

Figure 3-6 After Ref [13]
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B. RANDOMIZATION TESTING

Randomizatioﬁ Testing is a non-parametric statistical test which can be employed for
hypothesis testing of differences between two populations. Randomization testing is also
referred to in the literature as permutation tests. [16] Randomization testing is attractive for
testing rules induced from genetic programming because it makes no mathematical
assumptions concerning the number of models tested or the correlation of the predictions of
the models. As per Jensen [13], “Randomization tests have several advantages over other
approaches. They automatically account for the number of observations, the number of
models tested, and the correlation of the models.” Edgington [17] extensively covers the

applications of randomization testing to a variety of problems.

1. Randomization Testing Model

The randomization test is a variant of Fisher’s Exact Test (1935). It is a rank order
statistic method based on a comparison of the actual experimental results with a randomly

derived set of results. Edgington [17] formally defines the randomization test as:

A statistical test for which the significance is determined by permuting the data
repeatedly to compute ¢, F, or some other test statistic is called a randomization test.

The idea and methodology behind the randomization test is relatively simple. First, a test
statistic relevant to the problem is selected. The test statistic is then computed for the model
based on the actual data set. The data is permuted in a random fashion and the test statistic
computed for each permutation of the data. The test statistic for the actual (non-permuted)
data is combined with the test statistics from the random permutations. The resulting

distribution of test statistics is then placed in rank order. To reject Hy, and conclude that the
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sample from the actual results did not come from the sample of randomly permuted results,
the performance of the actual results must outrank the majority of the randomly permuted
results. Test statistics from the random permutations represent the best which can be
achieved by chance alone. If the test statistic from the actual data set does not outperform
the randomly derived test statistics, it can be construed as evidence to support the null
hypothesis that there no differences between the results of the model being tested and the

results which could be expected from a random process.
a. Randomization Test Procedures

As the randomization test is designed to test the differences between two
populations, the hypothesis is stated in a standard manner which is similar to the notation
used in conventional two-tailed statistics tests. Edgington [17] discusses test design
implementation of randomization testing. The null hypothesis is that the measurement or set
of measurements associated with each experimental unit is independent of the assignment
of units to treatments. In the case of rules derived from genetic programming methods, this
means that the performance of a rule on some test statistic is not significantly better than
could be achieved by random. The steps to be taken to ensure validity of the test are as

follows:

1. Specify the test statistic before the experiment, and ensure that the test statistic is
defined in such a way that it can be computed for a data permutation without
considering whether the data permutation represents the obtained results.

2. List every equally probable assignment of experimental units to treatments. (This
step presupposes a random assignment to treatments)

3. Within each of the equally probable assignments, substitute for each experimental
unit the measurement ( or set of measurements) for the unit to provide a distribution

of data permutations.

4. For each data permutation compute the test statistic specified in step 1.
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5. Determine the population of the data permutations with as large a test value as the
obtained test statistic value, and use that proportion as the P-value.

b. Achieved Significance Level

The Achieved Significance Level (ASL) of the test procedure is a p value
based on the proportion of data permutations with as large a test value as the actual obtained

test statistic value. Efron [16] states the formal definition of the ASL as
_# O > 0)

ASL,,,,, = - (3-1)

where @ is the test statistic from the random permutations and © represents the test statistic
from the actual data set. B is the number of instances of test statistics in the distribution.
To reject Hy, and conclude that the test statistic derived from the actual data set did not occur
as a result of a random process, © should outrank © 5 times for a B value of one hundred.

This would correspond to a p level of .05 for the significance of rejecting the null hypothesis.

¢. Random Data Permutation

Two methods exist for obtaining the random permutations of data used to
conduct a randomization test. They are referred to as systemic data permutation and random
data permutation. A systemic data permutation includes all permutations of the data in the
randomized data set used to conduct the test. A random data permutation involves the

sampling of permutations to obtain a randomized data set.
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A problem which could occur with random data permutation method is that
the sampled permutations are not representative of a uniformly random distribution. This
would likely be the ;esult of Monte Carlo error in the sampling procedure and be more
prevalent with a small number of permutation replications. Efron [16] addresses the problem
of the number of permutation replications to be used to minimize Monte Carlo error in
replication sampling. Computations were performed to find the number of permutation
replications required to make the coefficient of variation of the achieved significance level

«(ASL) < .10. Efron’s results are summarized in table 3-1.

ASL: 5 25 1 .05 025
B: 100 299 900 1901 3894

Table 3-1 From Ref [16]

The next chapter discusses the use of randomization testing for assessing the

statistical significance of rules induced from genetic programming.
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IV. DATA AND METHODOLOGY
A. NAVAL POSTGRADUATE SCHOOL GENETIC PROGRAM

The Naval Postgraduate School Genetic Program (NPSGP) is an adaption of the
Simple Genetic Program in C (SGPC) written by Tackett and Carmi. NPSGP modifies SGPC
by providing functionality for data mining. Only a brief description of the preparations for

use of NPSGP is provided here, a full User’s Manual is also available. [18]
1. Preparations to use NPSGP

a. Data Requirements

The data set intended for data mining with NPSGP must be in a tab-delimited

ASCII file. Additionally, NPSGP works best if the following conditions are met:

1. The target attribute (classification) is represented by non-continuous (discrete)
data.

2. The non-target attributes in the data set are represented by a mix of continuous
and discrete attributes.

3. All continuous attributes are linearly scaled to the same range.

b. Fitness Functions

The fitness function in NPSGP must be translated in C code to correspond to
a particular rule interest measure as defined in Chapter II. For each rule evaluated, NPSGP
partitions each example in the data set into one of four possible conditions. The conditions

are displayed in Table 4-1.

37




Classification (RHS) is :
True False
Description (LHS) - a b
is True
Description (LHS) c d
is False
Table 4-1

The rule interest measure is then coded to match the components of the table. For example,
the fitness function for the certainty rule interest measure would be simply

(a/(a + b))

c. Description of NPSGP Rules
A typical production rule induced from a data set used in the study would

appear as:

e ]
Tree # 45

(IF
(IN-CTGRY
GILL_SIZE
N )
(IN-CTGRY
CLASSIFY
P )
)
Number of Records matched by LHS: 2512
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The rule was developed from a data set of mushrooms used in the study. It is read as “IF (the
example mushroom) is in category of the attribute GILL_SIZE = N, THEN the classification
of the mushroom is P (poison(;us). Information is also given on the number of examples in
the data set matching fhe on-target attribute description of the rule and the number of times

the rule provides incorrect classifications.

B. DATA SELECTION

Two different data sets were used for generation of rules corresponding to patterns
in the data set for testing purposes. Both data sets are commonly used for evaluation of
machine learning methods by researchers. The data sets are available through anonymous ftp

from the University of California - Irvine (ics.uci.edu: pub/machine-learning-databases).
1. Description of the Mushroom Data Set

The mushroom data set was donated by Schlimmer and contains 8124 examples
corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota families. Each
tuple contains 22 nominally valued attributes and a classification for the example. Each

| example is classified as definitely edible, definitely poisonous, or of unknown edibility. The
latter class was combined with the poisonous one. A full description of the data set and
domain information is provided in Appendix A. Ref. [18] clearly states that there is no
simple rule for determining the edibility of a mushroom; no rule such as “leaflets three, let

it be” for poisonous Oak and Ivy.

a. Modifications to the Mushroom Data Set

Modifications were made to the mushroom data set to improve the
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performance of the NPSGP data mining software used in the study. Two nominally valued
attributes (Gill Spacing and Ring Number) were reformatted with continuous values over the
range of 0 -100 to provide a mixture of discrete and continuous attributes to enhance
performance. Additibnally, the data set was modified to test the ability of the software to
find a rare event. To facilitate this, a high quality rule in the data set was identified, (If Odor
= none, Then mushroom is edible), and the 852 examples supporting this rule were changed
from a classification of “e” to a classification of “z”. The actual rules tested for significance

from this data set were from a related study at the Naval Postgraduate School. [19]
2. Description of the Zoo Data Set

The zoo data set was donated by Forsyth and contains 101 examples of zoo animals
which are divided into seven distinct classes. The classes are standard taxonomic categories
such as mammals, reptiles, birds, etc. All non-target attributes are boolean with the
exception of one continuously valued attribute. The details of the attribute names and values
are provided in Appendix B. The actual rules tested for significance from this data set were

from previous research at the Naval Postgraduate School. [20]
C. RANDOMIZATION TESTING DESIGN

The design of the randomization testing to test the significance of the rules induced
from NPSGP involved the following steps:

1. Statement of the Hypothesis.

2. Computation of the test statistic of the NPSGP rules on the actual data set. For
the purposes of the study, the test statistic used was the confidence of the rule.

3. Randomization of the class labels in the data set.

4. Compute the test statistic of the NPSGP rules on the randomized data set.
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4. Repeat steps 2 and 3 for the required number of permutation replicatibns.
5. Compute the achieved significance level for each rule being tested.

6. Evaluate the stated hypothesis.

1. Statement of Hypothesis

The null hypothesis is that rules from induced by NPSGP are not more accurate than
rules ihduced by random processes, or alternatively stated, there is no difference between the
populations. The alternative hypothesis is that there exists a significant difference in the
accuracy of rule induced by NPSGP as compared to the performance of rules induced by
random processes. The hypothesis is formally stated as:

H, F,=F,
H,:F, #F,
where F, represents a NPSGP induced rule and F, represents a rule that is formed as a result

of a random process.
2. Randomization of the Data Set

The randomization test process requires the random assignment of class labels to the
examples in the data set for each permutation replication. In the study, the classification
labels were randomly assigned in the same proportions as they originally occurred in the data
set, e.g., for the 3916 occurrences of the poisonous classification in the mushroom data set
were randomly assigned to 3916 examples in the data set. This method involves sampling
the total number of permutations of class labels. For the mushroom data set of 8124
examples, there are 23,372 permutations without replication, i.e., each example in the data
set is assigned all three of the possible class labels with one the labels being the correct one.
The sampling was done to preserve the continuity of results occurring under the

randomization test If by chance the randomization process happened to correctly assign the
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3916 poisonous class labels to the corresponding correct examples in the data set, then an
equivalent test statistic should be computed for the actual and random results.
Randomization of class labels was accomplished by a program written in C++ for the two

specific data sets used in the study.

3. Generation of Permutation Replications

In a permutation replication, each NPSGP rule tested was scored on its performance
is classifying the relevant data set with randomly assigned labels as previously described.
The permutation replications were generated by a procedure which was executed in a Unix
C shell script. The procedure is represented in pseudocode:

For j ... # number of replications, Loop
Ra.ndomizc class labels in the data set

Compute confidence statistic for each rule tested

Record results for permutation replication on randomized data set
End Loop

A utility program was developed in C++ to grade the confidence of each NPSGP rule on the
permutation replications. As per Efron [16], 2000 permutations replications were selected
for each rule to minimize the coefficient of variance of the achieved significance level to less

than or equal to 0.10.
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4. Compute Achieved Significance Level

The computed test statistics for the NPSGP rules on the actual data set and on the
permutation replicatibns are arranged in rank order. The achieved significance level is
computed by summing the number of times the test statistic score from the permutation
replication exceeds the test statistic score achieved on the actual data set divided by the total

number of test statistics.
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V. ANALYSIS OF RESULTS

This chapter presents the results produced by the methodology described in the
previous chapter. Three different sets of rules meeting the criteria of being technically
interesting as defined in Chapter II were tested for significance using the randomization test
methodology described in the previous chapter. Two of the sets of rules tested were from
the mushroom data set and the other set of rules from the zoo data set previously described.
A sample result of the testing method is shown by the example in Table 5-1. The
significance level of the test in Table 5-1 is .05, but given the results of the test, the same
conclusion with respect to the null hypothesis would have been reached for a significance

level of .01.

A. SUMMARY OF RESULTS

1. Testing on Rules from the Mushroom Data Set

The first set of rules tested were from the mushroom data set after the NPSGP
program was allowed to run for 30 generations. The twelve rules in the set were induced
using the confidence fitness function. A summary of the rules’ performance on the actual
data set is presented in Table 5-2. The exact syntax of the rules and the C++ utility program
used to test the rules is included in Appendix C. The scoring statistic for the 2000
randomization permutation replications is the confidence of the rule on each permutation
replication. The scoring summary of the results of the 2000 permutation replications on the

twelve rules is presented in Table 5-3.
The accuracy of the rules on the randomized data set consistently ranged between

0.40 and 0.50. None of the scores of the permutation replications on the confidence test

statistic exceeded any of the results obtained on the actual data set. Therefore, the null
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hypothesis that the rules induced under genetic programming do not differ from those
randomly induced is rejected. The consistency in the results of the permutation replications
is mostly likely due to large number of examples (8124) and the distribution of the small

number of classes (3) in the data set.

Sample 1 Sample 2

Rule If Bruises = True, Then Edible If Odor = Foul or Gill Spacing
>=5.93 and Gill Spacing <=
62.05, Then Edible

Actual # of Tuples in Data Set 8124 8124
Actual # Left Hand Side

(Attributes)

matched in Data Set 3376 6812

Actual # Right Hand Side

(Classification)

matched in Data Set 2264 2430
Actual # of Misclassified |

Records. 1112 4382
Confidence of the Rule (%) 67.0 % 356 %

Actual # of Randomization

Trials >= Confidence of the
Rule 0 2000

Actual # of Randomization
Trials < Confidence of the Rule
2000 0

Hypothesis Conclusion at

Significance Level p = .05 Reject null hypothesis Fail to reject null hypothesis

Table 5-1
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Rule LHS matched # misclassified Confidence ( %)

Number

1 2372 144 93.9

2 556 44 92.0

3 2512 288 88.5

4 3188 808 74.6

5 828 228 724

6 2480 720 709

7 2304 144 93.7

8 512 64 875

9 1872 576 69.2

10 1024 120 88.2

11 3376 1112 67.0

12 1640 288 82.4
Table 5-2

Rule Count >= .50 Count < .50 and >= .40 Count < .40

Number

1 95 1905 0

2 0 1830 170

3 30 1970 0

4 21 1979 0

5 371 1629 0

6 73 1927 0

7 110 1890 0

8 509 1491 0

9 130 1870 0

10 190 1810 0

11 0 1979 21

12 75 1925 0
Table 5-3
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The second set of rules tested were also from the mushroom data set. However, this
set of eight rules were selected from the first generation of rules produced from the NPSGP
program and are generally of lower quality on the confidence fitness function. The
performance of this sét of rules on the actual data set is presented in Table 5-4. The exact

syntax of the rules and the C++ program used to test the rules is included in Appendix D.

Rule # LHS matched # misclassified Confidence (%)

Number

1 1072 400 62.7

2 1872 576 69.2

3 1202 410 65.9

4 1048 291 722

5 5612 2505 554

6 7004 3344 523

7 4936 2232 54.8

8 6476 3369 48.0
Table 5-4

Table 5-5 lists the results obtained from 2000 permutation replications.

Rule Count >= .50 Count < 50and | Count < .40

Number >= 40

1 120 1880 0

2 140 1860 0

3 0 1739 261

4 0 1748 252

5 0 2000 0

6 0 1998 2

7 0 1997 ' 3

8 0 1998 2
Table 5-5
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Again, no permutation replicatibns had test statistics exceeding those obtained on the actual
data set; as per the test criteria, the null hypothesis was rejected for all eight rules in this

sample.
2. Testing of Rules from the Zoo Data Set

The third set of rules tested for significance were from the zoo data set. The rules
selected were technically interesting rules induced from the data set which were of high
quality based on the confidence fitness function. The performance of the rules tested on the
actual data set is presented in Table 5-6. The actual syntax of the rule and the C++ program

used to test the rules is included as Appendix E.

Rule Number # LHS Matched # Misclassified Confidence ( %)
1 39 8 79.5
2 43 4 90.7
3 17 4 76.5
4 44 12 727
5 11 3 727
6 27 7 74.1
Table 5-6

The performance of the rule set on 2000 permutation replications is presented in Table 5-7.
No scoring statistic from any one permutation replication exceeded the score of any rule on
the actual data set. Again, the null hypothesis was rejected for the eight rules. The scoring
statistics on the permutation replications exhibited more variation than those on the
mushroom data set. It is speculated that this is due to the smaller number of examples in the
zoo data set as compared to the mushroom data set ( 101 vs. 8124) and the larger number of

classes ( 7 vs. 3) present.
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Rule Number | Count >=.60 | Count< .60 Count < .50 Count Count < Count <.20
and >= .50 and >= .40 <40and | .30 and >=
>=30 20

1 2 ‘ 134 977 814 72 1

2 5 105 852 1003 35 0

3 0 0 2 14 256 1728

4 2 150 971 785 92 0

5 0 0 0 8 74 1918

6 0 0 4 75 829 1092

Table 5-7

B. HYPOTHESIS CONCLUSION

The null hypothesis, that the rules induced by NPSGP perform no differently from
rules resulting from random processes, was rejected in all cases. In no cases did test statistics
from permutation replications exceed those obtained from the actual data set. Overall,
52,000 permutation replications were generated to test the significance of the 26 rules
selected for testing. In the vast majority of cases, the confidence test statistic for the

permutation replications were significantly lower than those of the actual test results.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The major objective of this study was to examine the problems and issues associated
with statistical hypothesis testing of rules induced from data mining tools. Data mining tools
will increasingly play a large part in analyzing the enormous amount of data stored within
DOD. Data mining tools such as NPSGP can produce potentially enormous amounts of
rules which increase the chance that a rule based on random variation in the data will be
accepted as a valid rule. Therefore, it is imperative that some means be available for the

testing of induced rules.

Randomization testing represents an attractive testing method for large number of
rules based on its freedom from assumptions made in conventional parametric tests. It
unquestionably produces accurate results when the methodology is correctly applied. Thus,
it is recommended for use in circumstances where the statistical validity of the rule in

question must be established to a high degree of accuracy.

All of the twenty six rules tested which were induced from NPSGP outscored the test
statistics on the confidence fitness measure produced by two thousand permutation
replications. The null hypothesis that NPSGP rules perform no better than rules produced
by a random process was rejected for all rules. The empirical results obtained from testing
the NPSGP rules showed that NPSGP’s clearly produces rules which are better than

produced by a random process.
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The empirical results alSo indicated, as expected, that data sets with a larger number
of classes and a small number of examples in the data set will experience more variation in
the scoring on the confidence fitness measure. Data sets with the above mentioned
characteristics will most likely have more chance for random variations in the data which

could appear as valid patterns in the data set.
B. RECOMMENDATIONS

More research needs to be conducted on real life data sets to determine if statistical
hypothesis testing is warranted for all data sets, especially with data sets with small numbers
of classes. If the existing rule induction methods always perform better than can be expected

by random, there is no need to conduct the testing.

One of the problems encountered during the study was the computational costs of
conducting the randomization testing. For example, the running time of permutation
replications for the testing of eight rules in the study took approximately six hours on a Sun
SPARC-10 workstation. Additional research could be conducted to optimize methods to

conduct the testing so that running times are lessened.
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APPENDIX A. MUSHROOM DATA SET

Mushroom Data Set Information

Sources:
(a) Mushroom records drawn from The Audubon Society Field Guide to North
American Mushrooms (1981). G. H. Lincoff (Pres.), New York: Alfred
A. Knopf
(b) Donor to UC- Irvine: Jeff Schlimmer (Jeffrey.Schlimmer@a.gp.cs.cmu.edu)
Date: 27 April 1987

Past Usage:

1. Schlimmer, J.S. (1987). Concept Acquisition Through Representational
Adjustment (Technical Report 87-19). Doctoral disseration, Department
of Information and Computer Science, University of California, Irvine.
--- STAGGER: asymptoted to 95% classification accuracy after reviewing

1000 instances.

2.Iba,W., Wogulis,J., & Langley,P. (1988). Trading off Simplicity
and Coverage in Incremental Concept Learning. In Proceedings of
the 5th International Conference on Machine Learning, 73-79.

Ann Arbor, Michigan: Morgan Kaufmann.
-- approximately the same results with their HILLARY algorithm

Relevant Information:
This data set includes descriptions of hypothetical samples
corresponding to 23 species of gilled mushrooms in the Agaricus and

Lepiota Family (pp. 500-525). Each species is identified as
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definitely edible, definitely poisonous, or of unknown edibility and
not recommended. This latter class was combined with the poisonous
one. The Guide clearly states that there is no simple rule for
determining the edibility of a mushroom; no rule like “"leaflets

three, let it be" for Poisonous Oak and Ivy.

Mushroom Data Set Attributes:

Classes: Edible, Poisonous, Z

Cap Shape:  Bell, Conical, Convex, Flat, Knobbed, Sunken

Cap Surface: Fibrous, Grooved, Scaly, Smooth

Cap Color:  Brown, Buff, Cinnamon, Gray, Green, Pink Purple, Red, White, Yellow

Bruises: True, False

Odor: Almond, Anise, Creosote, Foul, Musty, Pungent, None

Gill Attachment: Attached, Descending, Free, Notched

Gill Spacing: Close (0), Crowded (50), Distant (100)

Gill Size: Broad, Narrow

Gill Color: Black, Brown, Buff, Chocolate, Gray, Green, Orange, Pink, Purple, Red,

White, Yellow

Stalk Shape: Enlarging, Tapering

Stalk Root: ~ Bulbous, Club, Equal, Rhizomorphs, Rooted, Missing

Stalk Surface Above Ring:  Fibrous, Scaly, Silky, Smooth

Stalk Surface Below Ring:  Fibrous, Scaly, Silky, Smooth

Stalk Color Above Ring: Brown, Buff, Cinnamon, Gréy, Orange, Pink, Red

Stalk Color Below Ring: Brown, Buff, Cinnamon, Gray, Orange, Pink, Red, White,
. Yellow

Veil Type: Partial, Universal

Veil Color:  Brown, Orange, White, Yellow

Ring Number: None (0), One (50), Two(100)
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Ring Type: = Cobwebby, Evahescent, Flaring, Large, Pendant, Sheathing, Zone, None

Spore Print Color: Black, Brown, Buff, Chocolate, Green, Orange, Purple, White,
| Yellow

Population:  Abundant, Clustered, Numerous, Scattered, Several, Solitary

Habitat: Grasses, Leaves, Meadows, Paths, Urban, Waste, Woods

Examples: 8124

Distribution of Classes: Edible (3356), Poisonous (3916), Z (852)
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APPENDIX B. ZOO DATA SET

Relevant Information: A simple database containing 17 boolean -valued attributes. The

“type” attribute is the class attribute which corresponds to a classification of the animals.

Class Number/ Set of Animals:

1. (41) aardvark, antelope, bear, boar, buffalo, calf, cavy, cheetah, deer, dolphin, elephant,
fruitbat, giraffe, girl, goat, gorilla, hamster, hare, leopard, lion, leopard, lynx, mink, mole,
mongoose, opossum, oryx, playtpus, polecat, pony, porpoise, puma, pussycat, raccoon,

reindeer, seal. sealion, squirrel, vampire, vole, wallaby, wolf

2. (20) chicken, crow, dove, duck, flamingo, gull, hawk, kiwi, lark, ostrich, parakeet,

penguin, pheasant, rhea, skimmer, skua, sparrow, swan, vulture, wren

3. (5) pitviper, sea snake, slowworm, tortoise, tuatara

4. (13) bass, carp, catfish, chub, dogfish, haddock, herring, pike, piranha, seahorse, sole,

stingray, tuna

5. (4) frog, frog, newt, toad

6. (8) flea, gnat, honeybee, housefly, ladybird, moth, termite, wasp

7. (10) clam, crayfish, octopus, scorpion, seawasp, slug, starfish, worm
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Attribute Information:
Number of Attributes:
Attributes:

1.Animal Name:
2.hair:
3. feathers:

. eggs:
. milk:

4

5

6. airborne:
7. aquatic:

8. predator:

9. toothed:

10. backbone:
11. breathes:
12. venomous:
13. fins:

14. legs:

15. tail:

16. domestic:

17. catsize:

18. type:

Number of Examples:

18 (animal name, 15 boolean attributes, 2 numeric)

Unique for each instance
Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Numeric (set of values: 0,2,4,6,8)
Boolean

Boolean

Boolean

Numeric (integer values in range [1..7])

101
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APPENDIX C. RULES TESTING PROGRAM 1 (MUSHROOM)

#include <iostream.h>
#include <fstream.h>
#include <iomanip.h>
#include <stdlib.h>

int rulel_LHS_count =0;
int rulel _miss_records = 0;
int rule2_LHS_count = 0;
int rule2_miss_records = 0;
int rule3_LHS_count = 0;
int rule3_miss_records = 0;
int rule4_LHS count = 0;
int rule4_miss_records = 0,
int ruleS_LHS_count = 0;
int rule5_miss_records = 0;
int rule6_LHS_count = 0;
int rule6_miss_records = 0;
int rule7_LHS_count =0;
int rule7_miss_records = 0;
int rule8_LHS_count = 0;
int rule8_miss_records = 0;
int rule9_LHS_count = 0;
int rule9_miss_records = 0;
int rule10_LHS_count = 0;
int rule10_miss_records = 0;
intrulel1_LHS_count =0;
int rulel1_miss_records = 0;
int rulel2_LHS_count =0;
int rule12_miss_records = 0;

char rule_namel[] = "Rule 1";
char rule_name2[] = "Rule 2";
char rule_name3[] = "Rule 3";
char rule_name4[] = "Rule 4";
char rule_name5[] = "Rule 5";
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char rule_name6[] = "Rule 6";
char rule_name7[] = "Rule 7";
char rule_name8[] = "Rule 8";
char rule_name9[] = "Rule 9";
char rule_name10[] = "Rule 10";
char rule_namel1[] = "Rule 11";
char rule_namel2[] = "Rule 12",

int records_read=0;
void output(char [], int, int); // function prototype

main()

{

ifstream inClientFile("mushroom_spa", ios::in);
if (!inClientFile) {

cerr << "File could not be opened "<< endl;
exit(1); }

char classification;

char cap_shape;

char cap_surface;

char cap_color;

char bruises;

char odor;

char gill_attach;

int gill_spacing;

char gill_size;

char gill_color;

char stalk_shape;

char stalk_root;

char stalk_surf_abv_ring;
char stalk_surf_blw_ring;
char stalk_color_abv_ring;
char stalk_color_blw_ring;
char veil_type;

char veil_color;
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int ring_number;

char ring_type;

char spore_print_color;
char population;

char habitat; -

while (inClientFile >> classification >> cap_shape >> cap_surface >> cap_color
>> bruises >> odor >> gill_attach >> gill_spacing >> gill_size >> gill_color >>
stalk_shape >> stalk_root >> stalk_surf_abv_ring >> stalk_surf_blw_ring >>
stalk_color_abv_ring >> stalk_color_blw_ring >> veil_type >> veil_color

>> ring_number >> ring_type >> spore_print_color >> population >> habitat)

records_read = records_read +1;
/ftest rule 1
if ( stalk_surf_abv_ring == k')
{ rulel_LHS_count = rulel_LHS_count + 1;}

if ( stalk_surf_abv_ring == 'k' && classification !='p')
{ rulel_miss_records = rulel_miss_records + 1;}
// test rule 2

if ( stalk_root == 'c")
{ rule2_LHS_count = rule2_LHS_count +1;}

if ( stalk_root == 'c¢' && classification !="e')
{ rule2_miss_records = rule2_miss_records +1;}

// test rule 3

if ( gill_size =='n")
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{ ru1e3_LHS_éount =rule3_LHS_count +1;}
if ( gill_size == 'n' && classification !="p’)
{ rule3_miss_records = rule3_miss_records +1;}
// test rule 4

if ( stalk_surf_blw_ring !="'s")
{ rule4_LHS_count = rule4_LHS_count +1;}

if ( stalk_surf_blw_ring !="s' && classification !="p')
{ rule4_miss_records = rule4_miss_records +1;}

// test rule 5

if ( cap_shape == 'k')
{ rule5_LHS_count = rule5_LHS_count + 1;}

if (cap_shape == 'k' && classification !="p’)
{rule5_miss_records = rule5_miss_records +1;}

// test rule 6

if (stalk_root == x) .
{ rule6_LHS_count = rule6_LHS_count + 1;}

if (stalk_root == 'x' && classification !='p’)
{ rule6_miss_records = rule6_miss_records +1;}

// test rule 7
if ( stalk_surf_blw_ring == 'k')

{ rule7_LHS_count = rule7_LHS_count + 1;}

if (stalk_surf_blw_ring == 'k’ && classification !="p')
{ rule7_miss_records = rule7_miss_records + 1;}

62




// test rule 8

if ( stalk_color_blw_ring == 'n")
{ rule8_LHS_count = rule8_LHS_count + 1;}

if ( stalk_color_blw_ring == 'n' && classification !="p’)
{ rule8_miss_records = rule8_miss_records + 1;}

// test rule 9
if ( stalk_color_blw_ring == 'p' && !(ring_number >=9.76 &&

ring_number <= 11.638))
{ rule9_LHS_count = rule9_LHS_count + 1;}

if ( stalk_color_blw_ring == "p' && !(ring_number >=9.76 &&
ring_number <= 11.638) && (classification !="p"))
{ rule9_miss_records = rule9_miss_records + 1;}

// test rule 10

if ( gill_size == 'n' && cap_shape == 'X')
{ rule10_LHS_count = rule10_LHS_count + 1;}

if ( gill_size == 'n' && cap_shape == 'x' && classification != P)
{ rule10_miss_records = rule10_miss_records + 1;}

// testrule 11

if ( bruises =="'t")
{ rulel1_LHS_count = rule11_LHS_count + 1;}

if (bruises =='"t' && classification !="e")
{ rule11_miss_records = rulel1_miss_records + 1;}
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// test ruie 12

if ( gill_size == 'n' && stalk_color_abv_ring == 'w')
{ rule12_LHS_count = rule12_LHS_count + 1;}

if ( gill_size == 'n' && stalk_color_abv_ring == ‘W &&
classification !="p')
{ rule12_miss_records = rule12_miss_records + 1;}

}
{cout << "Number of records read in: " << records_read << endl;
cout << endl;
output( rule_namel, rulel _LHS_count, rulel_miss_records);

output( rule_name?2, rule2_LHS_count, rule2_miss_records);

output( rule_name3, rule3_LHS_count, rule3_miss_records);
output( rule_name4, rule4_LHS_count, rule4_miss_records);
output( rule_name5, rule5_LHS_count, rule5_miss_records);
output ( rule_name6, rule6_LHS_count, rule6_miss_records);
output( rule_name?7, rule7_LHS_count, rule7_miss_records);
output ( rule_name8, rule8_LHS_count, rule8_miss_records);
output ( rule_name9, rule9_LHS_count, rule9_miss_records);
output ( rule_namel0, rule10_LHS_count, rule10_miss_records);
output (rule_namel1, rule11_LHS_count, rule11_miss_records);
output (rule_namel2, rule12_LHS_count, rule12_miss_records);}

return 0; }
i
void output( char rule_id[], int LHS_matches , int misclassed_records)
{ float rule_conf = 1.0 - ((float) misclassed_records/LHS_matches);
cout << setiosflags(ios::left) <<rule_id << " "<< setw(5) << LHS_matches

<< " " << setw(5) << misclassed_records << " " << setprecision(3) <<
rule_conf << endl; }
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APPENDIX D. RULES TESTING PROGRAM 2 (MUSHROOM)

#include <iostream.h>
#include <fstream.h>
#include <iomanip.h>
#include <stdlib.h>

int rulel_LHS_count = 0;
int rule1_miss_records = 0;
int rule2_LHS_count =0;
int rule2_miss_records = O;
int rule3_LHS_count = 0;
int rule3_miss_records = 0;
int rule4_LHS_count = 0;
int rule4_miss_records = 0;
int rule5_LHS count = 0;
int rule5_miss_records = 0;
int rule6_ILLHS_count = 0;
int rule6_miss_records = 0;
int rule7_LHS_count = 0;
int rule7_miss_records = 0;
int rule8_LLHS_count = 0;
int rule8_miss_records = 0;

char rule_namel{] = "Rule 1";
char rule_name2[] = "Rule 2";
char rule_name3[] = "Rule 3";
char rule_name4[] = "Rule 4";
char rule_name5[] = "Rule 5";
char rule_name6[] = "Rule 6";
char rule_name7[] = "Rule 7";
char rule_name8[] = "Rule 8";

int records_read=0;
void output(char [], int, int); // function prototype

main()
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{

ifstream inClientFile("combo_file", ios::in);
if (!inClientFile) {

cerr << "File could not be opened "<< endl;
exit(1); }

char classification;

char cap_shape;

char cap_surface;

char cap_color;

char bruises;

char odor;

char gill_attach;

int gill_spacing;

char gill_size;

char gill_color;

char stalk_shape;

char stalk_root;

char stalk_surf_abv_ring;
char stalk_surf_blw_ring;
char stalk_color_abv_ring;
char stalk_color_blw_ring;
char veil_type;

char veil_color;

int ring_number;

char ring_type;

char spore_print_color;
char population;

char habitat;

while (inClientFile >> classification >> cap_shape >> cap_surface >> cap_color
>> bruises >> odor >> gill_attach >> gill_spacing >> gill_size >> gill_color >>
stalk_shape >> stalk_root >> stalk_surf_abv_ring >> stalk_surf_blw_ring >>
stalk_color_abv_ring >> stalk_color_blw_ring >> veil _type >> veil_color

>> ring_number >> ring_type >> spore_print_color >> population >> habitat)
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records_read = records_read +1;
// test rule 1
if (cap_color =="y")

{ rulel_LHS_count = rulel_LHS_count + 1;}

if ( cap_color =="y' && classification !="p')
{ rulel_miss_records = rulel_miss_records + 1;}
/1 test rule 2

if ( stalk_color_abv_ring =='p")
{ rule2_LHS_count = rule2_LHS_count +1;}

if ( stalk_color_abv_ring =="p' && classification !='p')
{ rule2_miss_records = rule2_miss_records +1;}

// test rule 3
if ( gill_color == 'w")
{ rule3_LHS_count = rule3_LHS_count +1;}

if ( gill_color == 'w' && classification !="e")
{ rule3_miss_records = rule3_miss_records +1;}

// test rule 4

if ( gill_color =="n")
{ rule4_LHS_count = rule4_LHS_count +1;}

if ( gill_color == 'n' && classification !="e")
{ rule4_miss_records = rule4_miss_records +1;}

// test rule 5

if ( gill_size == 'b')
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{ rule5_LHS_count = rule5_LHS_count + 1;}

if ( gill_size =='b' && classification !="'e")
{rule5_miss_records = rule5_miss_records +1;}

// test rule 6

if ( stalk_root !="¢')
{ rule6_LHS_count = rule6_LHS_count + 1;}

if (stalk_root !="e' && classification !="p’)
{ rule6_miss_records = rule6_miss_records +1;}

// test rule 7

if ( stalk_surf_blw_ring =="'s")
{ rule7_LHS_count = rule7_LHS_count + 1;}

if (stalk_surf_blw_ring =='s' && classification !="'e")
{ rule7_miss_records = rule7_miss_records + 1;}

// test rule 8

if ( (stalk_color_blw_ring =="p") Il (gill_size =='b"))
{ rule8_LHS_count = rule8_LHS_count + 1;}

if ( ((stalk_color_blw_ring == 'p") Il (gill_size == b)) &&
(classification !="¢') )
{ rule8_miss_records = rule8_miss_records + L} }
// end of testing conditions block

{ cout << "Number of records read in: " << records_read << end];
output( rule_namel, rulel_LHS_count, rulel _miss_records);
output( rule_name?2, rule2_LHS_count, rule2_miss_records);
output( rule_name3, rule3_LHS_count, rule3_miss_records);
output( rule_name4, rule4_LHS_count, rule4_miss_records);
output( rule_nameS5, rule5_LHS_count, rule5_miss_records);
output ( rule_name6, rule6_LHS_count, rule6_miss_records);
output( rule_name7, rule7_LHS_count, rule7_miss_records);
output ( rule_name8, rule8_LHS_count, rule8_miss_records); }
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return O; }

i
void output(char rule_id[], int LHS_matches , int misclassed_records)
{ float rule_conf = 1.0 - ((float) misclassed_records/LHS_matches);
cout << setiosflags(ios::left) <<rule_id << " "<< setw(5) <<

LHS_matches << " " << setw(5) << misclassed_records << " " <<
setprecision(3) << rule_conf << end]; }

69




70




APPENDIX E. RULES TESTING PROGRAM (ZOO)

#include <iostream.h>
#include <fstream.h>#include <iomanip.h>

#include <stdlib.h>

int rulel_LHS_count =0;
int rulel_miss_records = 0;
int rule2_LHS_count = 0;
int rule2_miss_records = 0;
int rule3_LHS_count = 0;
int rule3_miss_records = 0;
int ruled_LHS_count = 0;
int rule4_miss_records = 0;
int rule5_LHS_count = 0;
int rule5_miss_records = 0;
int rule6_LHS_count = 0;
int rule6_miss_records = 0;
int rule7_LHS_count = 0;
int rule7_miss_records = O;
int rule8_LHS_count = 0;
int rule8_miss_records = 0;
int rule9_LHS_count = 0;
int rule9_miss_records = 0;
int rule10_LHS_count = 0;
int rule10_miss_records = 0;
int rulel11_LHS_count = 0;
int rulel1_miss_records = 0;
int rule12_LHS_count = 0;
int rule12_miss_records = 0;

char rule_namel[] = "Rule 1";
char rule_name2[] = "Rule 2";
char rule_name3[] = "Rule 3";
char rule_name4[] = "Rule 4";
char rule_name5[] = "Rule 5";
char rule_name6[] = "Rule 6";
char rule_name7[] = "Rule 7";
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char rule_name8[] = "Rule 8";
char rule_name9[] = "Rule 9";
char rule_name10[] = "Rule 10";
char rule_namell[] = "Rule 11";
char rule_namel2[] = "Rule 12";

int records_read=0;
void output(char [], int, int); // function prototype

main()

{

ifstream inClientFile("gpzoo.tab", ios::in);
if (!inClientFile) {

cerr << "File could not be opened "<< endl;
exit(1); }

char name[10];
int hair;

int feathers;

int eggs;

int milk;

int airborne;
int aquatic;

int predator;
int toothed;

int backbone;
int breathes;
int venomous;
int fins;

int legs;

int tail;

int domestic;
int catsize;

int classification,;
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while (inClientFile >> name >> hair >> feathers >> eggs

>> milk >> airborne >> aquatic >> predator >> toothed >> backbone >>
breathes >> venomous >> fins >> legs >> tail >> domestic >> catsize >>
classification)

{
records_read = records_read +1;
/ftest rule 1

if (legs >=3.6 && legs <=5.9)

{ rulel1_LHS_count = rulel_LHS_count + 1;}

if ( (legs >= 3.6 && legs <= 5.9) && (classification != 1))
{ rulel_miss_records = rulel_miss_records + 1;}
// test rule 2

if (hair ==1)
{ rule2_LHS_count = rule2_LLHS_count + 1;}

if ( hair == 1 && classification !=1)
{ rule2_miss_records = rule2_miss_records +1;}
// test rule 3
if (fins==1)
{ rule3_LHS_count = rule3_LHS_count +1;}
if ( fins == 1 && classification != 4)
{ rule3_miss_records = rule3_miss_records +1;}

// test rule 4
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if ( catsize == 1)
{ rule4_LHS_count = rule4_LHS_count +1;}

if ( catsize == 1 && classification != 1)
{ rule4_miss_records = rule4_miss_records +1;}

// test rule 5

if (legs >=4.3 && legs <=17.0)
{ rule5_LHS_count = rule5_LHS_count + 1;}

if ((legs >= 4.3 && legs <= 7.0) && (classification != 6))
{rule5_miss_records = rule5_miss_records +1;}

// test rule 6

if (legs >=1.2 && legs <=3.9)
{ rule6_LHS_count = rule6_LHS_count + 1;}

if ((legs >= 1.2 && legs <=3.9) && (classification != 2))
{ rule6_miss_records = rule6_miss_records +1;}

// test rule 7

if ( catsize == Q)
{ rule7_LHS_count = rule7_LHS_count + 1;}

if ( ( catsize == 0) && (classification !=1))
{ rule7_miss_records = rule7_miss_records + 1;}

// test rule 8

if (eggs ==0)
{ rule8_LHS_count = rule8_LHS_count + 1;}
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if ((eggs ==0) && (classification != 1))
{ rule8_miss_records = rule8_miss_records + 1;}

}

cout << "Number of records read in: " << records_read << endl;

output( rule_namel, rulel_LHS_count, rulel_miss_records);
output( rule_name?2, rule2_LHS_count, rule2_miss_records);
output( rule_name3, rule3_LHS_count, rule3_miss_records);
output( rule_name4, rule4_LHS_count, rule4_miss_records);
output( rule_name3, rule5_LHS_count, rule5_miss_records);
output ( rule_name6, rule6_LHS_count, rule6_miss_records);
output( rule_name7, rule7_LHS_count, rule7_miss_records);
output ( rule_name8, rule8_LHS_count, rule8_miss_records); }

return O; }
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void output( char rule_id[], int LHS_matches , int misclassed_records)
{ float rule_conf = 1.0 - ((float) misclassed_records/LHS_matches);
cout << setiosflags(ios::left) <<rule_id << " "<< setw(5) << LHS_;matches

<< " " << setw(5) << misclassed_records << << setprecision(3) <<
rule_conf << endl; }

non
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